Measurement of Low Transverse Momentum Direct Photons Via External Conversions in Au+Au Collisions at sqrt(s) = 200 GeV with the PHENIX Detector at RHIC

Richard Petti For the PHENIX Collaboration Department of Physics and Astronomy Stony Brook University APS April Meeting 2010

Introduction

- A hot and dense form of partonic
 matter has been produced at RHIC
 Direct photons are an important
 probe of this medium
 - Do not interact with the medium
 - Initial temperature
- Just approved for publication in PRL: Enhanced production of direct photons in Au+Au collisions at sqrt (s)=200 GeV and implications for the initial temperature
 - Measure direct photon yield through internal conversions

Measuring Direct Photons

- We present a complimentary analysis measuring real photons at low $p_{\scriptscriptstyle T}$ to further support the findings in the paper
 - Measuring photons that externally convert in detector material
 Will reduce the statistical errors greatly in Run 7

The PHENIX Detector at RHIC

- Drift and Pad Chambers to measure charged particle momentum
- RICH for electron identification
- Electromagnetic calorimeters for measuring photon energy and ID
- The HBD is used strictly as a converter in this analysisBBC forward and backward (not shown) for event vertex determination

Method for Measuring Real Photons through Conversions Through a Double Ratio

e+/e- Pair efficiency

$$\frac{\gamma^{incl} (p_T)}{\gamma^{hadr} (p_T)}$$

$$\mathcal{E}_{\gamma}(p_{T}) \cdot \left(\frac{N_{\gamma}^{incl}(p_{T})}{N_{\gamma}^{\pi^{0}tag}(p_{T})}\right)_{Data}$$

$$\left(\frac{N_{\gamma}^{hadr}(p_{T})}{fN_{\gamma}^{\pi^{0}}(p_{T})}\right)_{Sim}$$

SIMULATION

DATA

$$N_{\gamma}^{incl}(p_T) = c \varepsilon_{pair} a_{pair} \gamma^{incl}(p_T)$$

$$N_{\gamma}^{\pi^0 tag}(p_T) = c \varepsilon_{pair} a_{pair} \varepsilon_{\gamma} f \gamma^{\pi^0}(p_T)$$

$$N_{\gamma}^{hadr}(p_T) = a_{pair} \gamma^{hadr}(p_T)$$

$$N_{\gamma}^{\pi^{0}tag}(p_{T}) = fN_{\gamma}^{\pi^{0}} = a_{pair}f\gamma^{\pi^{0}}(p_{T})$$

Conversion factor

Photon efficiency

e+/e- Pair acceptance

Conditional probability of having the photon in acceptance, given that the pair is already in the acceptance

- This method has the advantage of the pair acceptance canceling out in the ratio
- We do not need to know the conversion length of the HBD because of this π^0 tagging method

Conversion Pairs

- The PHENIX reconstruction software assumes all particles come from the event vertex
 - Not true for HBD conversion electrons (r ≈ 60cm)
 - Acquire an apparent opening angle, and hence an artificial mass
- Conversion pairs will open up perpendicular to the field
 - Dalitz decays will open randomly to the field
 - $\bullet \ \phi_V$ angle measures this

Simulation Studies

Simulations show that we can isolate HBD conversions through the apparent mass observed and the ϕ_V angle even in the weaker magnetic field of the +- configuration for Run 7 Shown are full Monte Carlo simulations of photons, modeling detector response (GEANT) and doing the full PHENIX reconstruction on the simulated data

Measuring the Raw Uncorrected Inclusive Photon Sample

- Electrons and positrons are identified using standard PHENIX eID cuts
 - Number of RICH phototubes fired
 - Shower shape in the emcal
 - Energy/momentum ratio
- Then all electrons and positrons within an event are paired
 - Keep pairs with $\phi_V < 0.3$
 - Pairs with mass < 18MeV are the

converted photons

Inclusive photons that converted

Measuring the Raw Uncorrected π⁰ Tagged Sample

 π^0 yield within 2σ of the mean

Many of the photons are coming from π^0 decays

To get a π^0 tagged sample, photons in the emcal are paired with the converted photons found in the inclusive sample Combinatorial background is estimated using a mixed event technique

 Pairs are formed with particles from different (but similar) events to get the uncorrelated combinatorial background

mass of the e+/e-/photon triplet

10⁻⁴

mass of the e+/e-/photon triplet (GeV)

Summary and Outlook

- Progress is being made on measuring low pT real direct photons in Au+Au collisions through an external conversion method
- Raw spectra have been measured for inclusive photons and π^0 tagged sample from 1 5 GeV
- Working on getting all the correction factors through Monte Carlo studies
- Working on the denominator in the double ratio estimating other hadronic contributions
- Expect a full result within the year

Backups

Relation Between Pair Production and Photon Production

$$\frac{d^2 n_{ee}}{d m_{ee}} = \frac{2\alpha}{3\pi} \frac{1}{m_{ee}} \sqrt{1 - \frac{4m_e^2}{m_{ee}^2}} \left(1 + \frac{2m_e^2}{m_{ee}^2}\right) S dn_{\gamma}.$$

PhiV Angle and Mass as a Function of Event Vertex

Magnetic Field Configurations

Magnetic field lines for the two Central Magnet coils in reversed (±) mode

Magnetic field lines for the two Central Magnet coils in combined (++) mode

Advantage of Measuring Photons through conversions to e+/e-

- Photon measurements at low pT are notoriously difficult due to high multiplicity
- Measuring these photons through conversions is a nice way to get around this
- PHENIX has excellent electron identification and so this is a useful channel for study

